Freewaygrp.ru

Строительный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет устойчивости откосов методика

САРЖАНОВ Т.С., МУСАЕВА Г.С.

РАСЧЕТЫ УСТОЙЧИВОСТИ ЗЕМЛЯНОГО ПОЛОТНА

Расчеты устойчивости земляного полотна определяют условия сопротивления грунта деформациям сдвига, а расчеты прочности – сопротивляемость грунтов деформациям уплотнения, причем оба вида этих расчетов неразрывно связаны между собой. Стабильность земляного полотна зависит от вида и состояния слагающих его грунтов. Основными показателями качества грунтов являются сдвиговые характеристики – угол внутреннего трения φ и удельное сцепление с, а также плотность и влажность. Исследования ВНИИЖТа показали, что при прочих равных условиях повышению устойчивости откосов насыпей особенно существенно способствует увеличение удельного сцепления грунтов – с. Так, если изменение угла внутреннего трения φ 14÷20 о приводит к увеличению коэффициента устойчивости Куст на 0,5, то рост удельного сцепления – 49÷98 кПа дает увеличение коэффициента устойчивости Куст на 1,6. Сдвиговые характеристики не являются постоянными величинами и зависят от рода грунта, его плотности и влажности.

Стабильность земляного полотна может быть значительно повышена созданием таких специальных сооружений, как поверхностные и подземные водоотводы, гидроизоляционные и термоизоляционные одежды и т.д., большинство из которых существенно влияет на влажность грунта, а значит, и на основные расчетные характеристики.

Теории расчета устойчивости земляного полотна посвящены исследования В.В. Соколовского, Г.М. Шахунянца, М.Н. Гольдштейна, К. Терцаги, В. Феллениуса, Г.Г. Коншина, В.П. Титова, В.В. Виноградова, Т.Г. Яковлевой, и др. Появились работы, в которых используется вариационный метод расчета устойчивости, впервые предложенный Н.М. Герсевановым. Это работы Ю.И. Соловьева, А.Г. Дорфмана, Я. Копаши и др.

Тело земляного полотна находится в напряженном состоянии, обусловленном влиянием внешних сил и собственного его веса. Когда напряжения в грунте превышают определенный предел, возникают остаточные деформации в виде смещения объема грунта как единого целого.

Практические методы расчета устойчивости подразделены на две группы: графо-аналитические и аналитические. Графо-аналитические методы расчета нашли более широкое практическое применение.

Обследованием большого числа натурных оползней и просто сползших откосов установлено, что поверхность смещения земляных масс в однородных связных близка к круглоцилиндрической. В сыпучих грунтах поверхность смещения близка к плоскости. Поэтому во всех графо-аналитических расчетах, относящихся к однородным грунтам, предполагают, что смещение грунтов при потере устойчивости происходит по круглоцилиндрической поверхности.

В результате исследований разработаны: метод определения коэффициента устойчивости насыпи – K уст; расчета устойчивости насыпи, состоящей из двух пластов; методика вычисления коэффициента устойчивости; расчет устойчивости откосов насыпи, имеющих ломанные очертания; расчет устойчивости откосов земляного полотна и оползней при наличии предопределенной поверхности скольжения; расчеты устойчивости откосов земляного полотна и оползневых склонов с использованием ЭВМ; особенности расчета устойчивости насыпей и оползневых косогоров с учетом силового влияния воды; расчеты устойчивости откосов пойменной насыпи; особенности расчета устойчивости откосов земляного полотна в сейсмических условиях.

Оценку общей устойчивости земляного полотна (насыпей и откосов выемок) нормами СТН Ц-01-95 рекомендуется осуществлять по первому предельному состоянию – несущей способности (по условиям предельного равновесия).

Устойчивость откосов должна быть проверена по возможным поверхностям сдвига (круглоцилиндрической или по другим, в т.ч. ломанным поверхностям) с нахождением наиболее опасной призмы обрушения, характеризуемой минимальным отношением обобщенных предельных реактивных сил сопротивления к активным сдвигающим силам.

Критерием устойчивости земляных массивов является соблюдение (для наиболее опасной призмы обрушения) неравенства:

где ηfc – коэффициент сочетания нагрузок, учитывающий уменьшение вероятности одновременного появления расчетных нагрузок; Т – расчетное значение обобщенной активной сдвигающей силы; ηс – коэффициент условий работы; R – расчетное значение обобщенной силы предельного сопротивления сдвигу, определенное с учетом коэффициента надежности по грунтам ηg (коэффициент безопасности по грунтам); ηп – коэффициент надежности, по назначению сооружения (коэффициент ответственности сооружения).

Расчетные значения Т и R определяются с учетом коэффициента надежности по нагрузке ηf (коэффициента перегрузки). Учет этого коэффициента осуществляется путем умножения на него всех действующих сил (в т.ч. веса призмы обрушения или ее отсеков). Сейсмические нагрузки принимаются с коэффициентом надежности по нагрузке ηf, равным единице. Значение коэффициента ηf принимается при расчете устойчивости откосов выемок равным 1,1, а при расчете устойчивости насыпей 1,15. В тех случаях, когда ухудшение устойчивости может произойти за счет уменьшения действующих сил, следует принимать ηf = 0,9.

Значение коэффициента надежности по грунтам ηп устанавливаются в соответствии с указаниями СНиП 2.02.01-83 [1], а также по ГОСТ 20522-75 [2]. Учет этого коэффициента осуществляться путем деления нормативных значений прочностных характеристик грунтов (удельного сцепления, угла внутреннего трения) на величину коэффициента надежности, устанавливаемую в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности α, принимаемой равной 0,95.

При поиске наиболее опасной призмы обрушения за критерий устойчивости принимается коэффициент устойчивости:

Полученные расчетом значения коэффициента устойчивости при соответствующем сочетании нагрузок не должны превышать величины (ηпηfc)/ηс более чем на 10% и должны быть не менее 1,05 (при расчетах насыпей, сооружаемых из мелких и пылеватых песков и супесей с высоким уровнем динамического воздействия (скорости более 120 км/ч, 8-миосный подвижной состав) величина Кs должна быть не менее 1,25).

Устойчивость откосов считается обеспеченной, если условия, определяемые формулой (1), удовлетворяются, в противном случае принимается решение о перепроектировке берм, контрбанкетов и т.д. либо о стратегии восстановлении его при землетрясении.

Читать еще:  Чем сделать откосы у ниши

Аналитические способы расчета устойчивости откосов земляного полотна для отдельных задач могут быть весьма эффективными. В бывшем СССР такие способы были разработаны В.В. Соколовским, Г.М. Шахунянцем, А.Г. Дорфманом и др. Способ В.В. Соколовского очень сложен и требует большой вычислительной работы, поэтому он не получил на практике широкого распространения. Способ Г.М. Шахунянца оказался очень удобным и простым для случаев, когда за откосом выемки расположена бесконечная площадка.

Критическое положение плоскости обрушения, при котором коэффициент устойчивости принимает минимальное значение Кmin, определяется последовательным изменением угла β по формуле:

Кmin = (2Uо + f)/tgα + 2 (Uо 2 + Uоf)/sinα , (3)

где Uо = 2сН; с – удельное сцепление; γ – объемный вес грунта; Н – высота откоса; f – коэффициент внутреннего трения грунта, равный f = tgφ, φ – угол внутреннего трения грунта; α – угол наклона откоса выемки к горизонту.

Представляет практический интерес вариационный метод расчета устойчивости откосов, разработанный А.Г. Дорфманом. Расчет сводится к исследованию на экстремум коэффициента устойчивости как выражения (функционала), зависящего от выбора кривой скольжения и параметров (геометрических и геотехнических) расчетной схемы откоса.

Форму линий скольжения заранее не назначают, т.е. опаснейшую линию отыскивают среди всевозможных кривых, а не только среди прямых, окружностей и т.д. При этом отпадает необходимость в поиске критического центра.

Для случаев произвольной однородной насыпи способ вариационного расчета устойчивости, предложенный А.Г. Дорфманом, сводится к следующему. Коэффициент устойчивости К рассматривают как отношение работы удерживающих сил к работе сдвигающих сил и записывают в виде:

(4)

где F = (ŷ -·y)tgφ + c(1 + y’ 2 )/γ; Ф = (ŷ·-y)y´; (5)

y = ŷ(х) – уравнение контура насыпи (с приведенной нагрузкой); у = у(х) – уравнение линии скольжения, причем уп = ỹ, если а b или xnа; хп, уп – координаты конца кривой скольжения (начало координат принято на подошве откоса); ỹ — ордината основной площадки земляного полотна; а и b – абсциссы, ограничивающие нагрузку на основную площадку земляного полотна.

Уравнение искомой (критической) линии скольжения у = у(х) в развернутом виде имеет вид:

(6)

G = 2суп‘/γ + хпtgφ — tŷп; (8)

(9)

В уравнениях (7), (8) и (9) все величины известны, кроме хп. Значение хп на ходится из уравнения:

(10)

Найденное значение соответствует критической кривой скольжения, для которой:

t = К, (11)

где К – искомый критический коэффициент устойчивости.

На основании изложенного выше, можно заключить, что известные методы определения устойчивости откосов, довольно условны и ненадежны . Получаемые результаты могут быть признаны удовлетворительными только для высокопластичных однородных грунтов при φ = соnst и с = const, т.е. для умеренной климатической полосы. Поэтому назрела необходимость пересмотра положений, на которых базируются указанные методы. Это относится к безоговорочному принятию практически для всех случаев теории разрушения грунтов только от касательных напряжений, к допущению полной зависимости Куст откоса только от положения в пространстве раз и навсегда принятой круглоцилиндрической или близкой к ней поверхности разрушения.

1 СНиП 2. 02.01.83. Основания зданий и сооружений. Нормы проектирования // Госстрой СССР. – М.: Стройиздат, 1983. – С. 21.

2 ГОСТ 20522-75. Грунты. Метод статической обработки результатов определений характеристик. – М.: Стройиздат, 1975. – С. 21.

Н.В. Крупина Расчет устойчивости откосов методами равноустойчивогооткоса Fp, КЦПС и ППС

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра автомобильных дорог

РАСЧЕТ УСТОЙЧИВОСТИ ОТКОСОВ МЕТОДАМИ РАВНОУСТОЙЧИВОГО ОТКОСА F p , КЦПС И ППС

Методические указания по выполнению курсовой работы по дисциплине «Устойчивость откосов, основания и фундаменты» для студентов специальности «Автомобильные дороги и аэродромы» 29100 дневной формы обучения

Составители Н.В.Крупина А.И. Столярчук

Утверждены на заседании кафедры

Протокол № 4 от 5.02.99 Рекомендованы к печати учебно-методической комиссией

по специальности 291000 Протокол № 4 от 5.02.99

Электронная копия находится в библиотеке главного корпуса КузГТУ

Массив грунта, ограниченный наклонной поверхностью, называется откосом. Откосы могут быть естественными (природными) и искусственными, образованными в результате инженерной деятельности человека.

При проектировании различных объектов вблизи естественного откоса или земляного сооружения, включающего откос, необходимо произвести расчет устойчивости этого откоса, т.к. потеря устойчивости выемки или насыпи автомобильной дороги может на длительное время вывести автомобильную дорогу из эксплуатации, прервать сообщение между населенными пунктами. Восстановление автомобильной дороги требует привлечение больших дополнительных финансовых и людских трудозатрат. Поэтому расчет устойчивости откосов является одним из важных вопросов при проектировании автомобильных дорог.

Каждому студенту предлагается согласно своего варианта, указанного в задании, выбрать по инженерно-геологической карте (прил. 1) и таблице (прил. 2) свой геологический разрез, направление рассчитываемого борта и глубину выемки. Геологический разрез представлен в плоскости, перпендикулярной проектируемому откосу, расположенному в его геометрическом центре. Вид и мощность слоев грунта, а также уровень грунтовых вод по скважинам определяют по таблице прил.3. В таблице прил. 4 даны физико-механические характеристики грунта.

СОДЕРЖАНИЕ КУРСОВОЙ РАБОТЫ

Курсовая работа состоит из расчетно-пояснительной записки с необходимыми таблицами, схемами и графиками объемом 25-30 страниц и одного листа форматом А1, на котором расположены: геологический разрез, чертежи откосов методами F р , КЦПС, ППС (без учета и с учетом воздействия воды).

Расчетно-пояснительная записка должна содержать:

— -бланк задания на проектирование с необходимыми исходными данными;

Читать еще:  Как правильно сделать внутренний откос

— оценку инженерно-геологических условий;

— метод расчета равноустойчивого откоса F р ;

— метод круглоцилиндрических поверхностей скольжения (КЦПС);

— метод плоских поверхностей скольжения (ППС);

— список использованной литературы

Графическая часть курсовой работы должна содержать:

— инженерно-геологический разрез (М 1:50; 1:100; 1:200), горизонтальный и вертикальный масштабы могут быть различными;

— схемы для расчета устойчивости откоса (методами F р , КЦПС, ППС) с учетом и без учета воздействия воды.

ОЦЕНКА ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЙ

При оценке инженерно-геологических условий строительной площадки студент на основании полученных исходных данных должен осветить в пояснительной записке:

1) географическое положение площадки;

2) геологическую характеристику площадки (описание грунтов в порядке их залегания сверху вниз, мощность слоев и особенности их залегания);

3) гидрогеологические условия строительной площадки (наличие и уровень грунтовых вод);

4) показатели физико-механических свойств грунтов для каждого слоя, средние значения физико-механических свойств основных грунтов, слагающих откос, заносят студенты в табл. 1

Методы расчета устойчивости откосов

Метод круглоцилиндрических поверхностей скольжения

Реальные грунты , как правило, обладают не только сцеплением, но и трением. В связи с этим проблема устойчивости откосов становится значительно сложнее, чем в рассмотренных случаях. Поэтому на практике для решения задач в строгой постановке, большое распространение получил метод круглоцилиндрических поверхностей скольжения.

Теория предельного равновесия грунтов, развитая В.В. Соколовским, позволяет решать задачи двух типов:

  • задан угол наклона плоского откоса, определяется интенсивность
    внешней нагрузки на верхней горизонтальной поверхности грунта, офаниченного откосом массива;
  • задана интенсивность нагрузки на верхней горизонтальной поверхности грунта, офаниченного откосом массива, определяется форма равноустойчивого откоса, находящегося в предельном напряженном состоянии.
    Задача первого типа, при однородных грунтах и плоском откосе ( рис. 9.6 ) решена В.В. Соколовским в безразмерных величинах q ( табл. 9.1 ).

Рис. 9.6. Схема к расчету устойчивости плоского откоса по теории предельного равновесия

Таблица 9.1. Значения безразмерного коэффициента q

XПри φ, град.
10203040
При α, град.
10102010203010203040
8,37,514,812,710,924,319,615,755,941,430,622,5
19,68,220,616,613,139,828,820,3126,081,150,931,0
210,88,925,419,915,052,936,724,2186,0115,068,438,1
311,89,629,823,016,765,144,127,8243,0148,084,944,4
412,810,234,025,818,376,851,231,1299,0179,0101,050,4
513,710,838,028,719,988,358,134,3354,0211,0117,056,2
614,511,341,831,421,499,665,037,4409,0241,0132,061,7

Исходными уравнениями для решения этой задачи являются:

(9.8)

(9.9.)

(9.10)

Выражения (9.8) и (9.9), как было выше сказано, представляют дифференциальные уравнения равновесия, а (9.10) — условие предельного равновесия.

Предельная нагрузка на верхней горизонтальной поверхности откоса, зная q , определяется из выражения

(9.11)

где q — безразмерный коэффициент, зависящий от углов внутреннего трения φ, угла α и расстояния х от края откоса до рассматриваемой точки ( см. табл. 9.1 ).
Задача второго типа для случаев, когда на верхней горизонтальной поверхности откоса распределена равномерная нагрузка (по В.В. Соколовскому):

(9.12)

и надо найти равноустойчивый откос.

Для случаев, когда с≠0 и φ≠0, с помощью численного интегрирования дифференциальных уравнений получены очертания равноустойчивых откосов в безразмерных коэффициентах, которые представлены на рис. 9.7.

Согласно рис. 9.7 для нахождения действующего очертания равноустойчивого откоса определяют Х и Z :

(9.13)

и строят равноустойчивый откос, начиная с его верхней кромки.

При угле внутреннего трения φ = 0 устойчивость откоса определяется силами сцепления:

(9.14)

где с — удельная сила сцепления, обеспечивающая устойчивость откоса; Q — масса призмы обрушения ( рис. 9.8,а ) равная Q= γ·h ; h — высота откоса; γ — удельный вес оползающего грунта; r — плечо сиилы относительно центра О ; l — длина дуги поверхности скольжения.

Рис.9.7. Графики для построения равноустойчивых контуров откосов в безразмерных координатов

Рис. 9.8. Схемы к расчету устойчивости откоса:
1- зависимость ∟α от β; 2 — зависимость ∟θ от ∟β; γ — удельный вес оползающего грунта; r — плечо силы относительного центра О ; R — радиус поверхности скольжения; l — длина дуги поверхности скольжения.

Откос находится в устойчивом состоянии, если величина фактической силы сцепления с будет больше или равна критической с cv или максимальной удельной силе сцепления:

(9.15)

Вероятная поверхность скольжения пройдет через подошву откоса по такой дуге окружности, для которой требуется c cv . При известном значении угла β значения углов α и θ и, следовательно, положение центра О определяют по графику Феллениуса ( см. рис. 9.8,6 ).

Большое распространение на практике получил метод круглоцилиндрических поверхностей скольжения, сущность этого метода заключается в отыскании круглоцилиндрической поверхности скольжения с центром в некоторой точке О, проходящей через подошву откоса, для которой коэффициент устойчивости будет минимальным ( рис. 9.9 ).

Рис. 9. 9. Схема к расчету устойчивости откоса методом круглоцилиндрической поверхности скольжения

Расчет ведется для отсека, для чего оползающий клин ABC разбивается на n вертикальных отсеков. Делается предположение, что нормальные и касательные напряжения, действующие по поверхности скольжения, в пределах каждого из отсеков оползающего клина определяются весом данного отсека Q i , и равны соответственно:

(9.16)

(9.17)

Здесь
A i — площадь поверхности скольжения в пределах i -го вертикального отсека, A i = 1l i ; l i — длина дуги скольжения в плоскости чертежа ( см. рис. 9.9 ).

Препятствующее оползанию откоса сопротивление сдвигу по рассматриваемой поверхности в предельном состоянии

(9.18)

Из (9.16)—(9.18) следует выражение для силы сопротивления сдвигу в пределах i -го отсека:

(9.19)

Устойчивость откоса можно оценить отношением моментов удерживающих M s,l и сдвигающих M s,a сил. Соответственно коэффициент запаса устойчивости определим по формуле

(9.20)

Момент удерживающих сил относительно О представляет собой момент сил Q i :

(9.21)

Момент сдвигающих сил относительно точки О

(9.22)

Тогда формулу (9.19) можно записать в следующем виде:

(9.23)

При наличии подземных вод учитывают фильтрационное давление, которое будет уменьшать устойчивость откоса. Фильтрационное давление определяют как нормальную составляющую:

(9.24)

для i -й призмы или отсека

где А’ — площадь, занятая фильтрационным потоком в оползающей призме грунта, равная А’ = А’ 1 + А’ 2 + А’ 3 ( рис. 9.10 ); γ ω — удельный вес воды.

Рис. 9.10. Схема к определению площади, занятой фильтрационным потоком

Фильтрационное давление влияет только на нормальную составляющую формулы (9.23).

Устойчивость откоса согласно изложенной расчетной методике обеспечена, если k s >1. При проектировании сооружений коэффициент устойчивости назначают обычно в пределах 1,2—1,3.

Для решения практических задач установлен следующий порядок расчета. Из некоторого произвольного центра О 1 радиусом R через точку С проводят поверхность скольжения (см. рис. 9.9). Участок откоса, ограниченный дугой АС и ломаной линией откоса ABC , разбивают на ряд призм равной ширины, массу которых подсчитывают как площади соответствующих фигур, умноженных на удельный вес грунта. При наличии в откосе грунтов с различным удельным весом строят фиктивный профиль с удельным весом, приведенным к одному из имеющихся.

Далее по формуле (9.23) определяют коэффициент устойчивости. После того повторяют построения и расчеты при цилиндрических поверхностях скольжения, проведенных из новых центров О 2 , О 3 и т.д. до тех пор, пока не будет найдено минимальное значение ks на первой вертикали. Аналогично проводят расчет, определяя минимальное значение коэффициента устойчивости для второй вертикали, строя круглоцилиндрические поверхности, проведенные из центров O 4 , O 5 , O 6 . Затем такие же расчеты повторяют для третьей, четвертой и т.д. вертикалей, пока не будет определен самый минимальный коэффициент устойчивости. Поверхность скольжения, имеющая наименьшую величину k s , будет наиболее вероятной поверхностью скольжения грунтов склона.

Расчет устойчивости откосов методика

Сообщение

Прочность и устойчивость грунтовых массивов. Давление грунтов на ограждения — Инженерные методы расчёта устойчивости откосов и склонов

Содержание материала

  • Прочность и устойчивость грунтовых массивов. Давление грунтов на ограждения
  • Критические нагрузки на грунты основания
  • Начальная критическая нагрузка
  • Нормативное сопротивление и расчетное давление
  • Предельная критическая нагрузка
  • Практические способы расчета несущей способности и устойчивости оснований
  • Понятие о коэффициенте запаса устойчивости откосов и склонов
  • Простейшие методы расчетов устойчивости
  • Учет влияния фильтрационных сил
  • Инженерные методы расчёта устойчивости откосов и склонов
  • Мероприятия по повышению устойчивости откосов и склонов
  • Определение активного давления на вертикальную грань стенки для сыпучего грунта и связного грунта, учёт пригрузки на поверхности засыпки
  • Учёт сцепления грунта
  • Все страницы
4.5. Инженерные методы расчёта устойчивости откосов и склонов

В проектной практике применяются инженерные методы, содержащие различные упрощения.

4.5.1. Метод круглоцилиндрических поверхностей скольжения

Предполагается, что потеря устойчивости откоса (склона) может произойти в результате вращения отсека грунтового массива относительно некоторого центра О (рис. 4.5, а).

Суть метода заключается в анализе устойчивости склона против сдвига по ряду возможных поверхностей скольжения, представленных дугой окружности с радиусом r и центром в т. О.

Отсек грунтового массива, ограниченный свободной поверхностью и поверхностью скольжения, разбивается вертикальными линиями на n элементов таким образом, чтобы можно было принять основание каждого отсека плоским, а прочностные характеристики постоянными.

Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении.

Коэффициент устойчивости принимается в виде:

, где Мsr и Msa – моменты относительно центра вращения О всех сил, соответственно удерживающих и смещающих отсек.

1. Грунтовый массив разбивается на отдельные элементы.

2. Вычисляются вертикальные силы, действующие на каждый элемент: собственный вес грунтаPgi и равнодействующая нагрузки на его поверхности Pqi.

3. Равнодействующая сил Pgi+Pqi раскладывается на нормальную Ni и касательную Ti составляющие. ; .

4. Находим c и li – длину дуги.

Момент сил, вращающих отсек вокруг т. О, определится как:

n – число элементов в отсеке.

удерживающие силы обуславливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта.

При наличии внешних вертикальных нагрузок они включаются в величину веса блока (призмы).

α – угол между нормалью к основанию i-го элемента и вертикалью.

— длина основания i-го элемента, где bi – ширина i-го отсека.

φI i и cI i – расчетные значения характеристик прочности грунта в пределах основания i-го элемента.

Соотносительно:

При kst ≥ k н st устойчивость откоса относительно выбранного центра вращения т.О обеспечена.

— Основная сложность при практических расчетах заключается в том, что положение центра вращения О и выбор радиуса r, соотносящие наиболее опасному случаю, неизвестны.

— Обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r.

— Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса (склона). Кроме слабых грунтов с минимальными φ и с.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector