Угол естественного откоса песка под водой

Содержание

Угол естественного откоса песка под водой

Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии. Определение угла естественного откоса песчаного грунта Естественный откос грунта

Угол естественного откоса — это наибольший угол, который может быть образован откосом свободно насыпанного грунта в состоянии равновесия с горизонтальной плоскостью.

Читать еще:  Что такое устройство уступов по откосам насыпей

Угол естественного откоса зависит от гранулометрического состава и формы частиц. С уменьшением размера зерен угол естественного откоса становится положе.
В воздушно-сухом состоянии угол естественного откоса песчаного грунта равен 30-40°, под водой — 24-33°. Для грунтов, не обладающих сцеплением (сыпучих), угол естественного откоса не превышает угла внутреннего трения

Для определения угла естественного откоса песчаного грунта в воздушно-сухом состоянии используют прибор УВТ (рис. 9.11, 9.12 ), под водой — ВИА (рис. 9.13 ).

Согласно рис. 9.12 при наклоне ящика песок осыпается и, разрыхляясь, образует откос с углом, который можно определить транспортиром или по формуле

Понятие об угле естественного откоса относится только к сухим сыпучим грунтам, а для связных глинистых оно теряет всякий смысл, так как у последних он зависит от влажности, высоты откоса и величины пригрузки на откос и может изменяться от 0 до 90°.

Рис. 9.11. Прибор УВТ-2: 1 — шкала; 2 — резервуар; 3 — мерительный столик; 4 — обойма; 5 — опора; 6 — образец песка

Рис. 9.12. Определение угла естественного откоса вращением емкости (а) и медленным снятием пластинки (б): А — ось вращения емкости

Рис. 9.13. Прибор ВИА: 1 — ящик ВИА; 2 — образец песка; 3 — емкость с водой; 4 — транспортир; 5 — ось вращения; 6- пьезометр; 7- штатив

При разработке и усадке разрыхленного грунта выемки и насыпи образуют естественные откосы различной крутизны. Наибольшую крутизну плоских откосов земляных сооружений, траншей и котлованов, устраиваемых без креплений, следует принимать согласно табл. 9.2. При обеспечении естественной крутизны откосов обеспечивается устойчивость земляных насыпей и выемок.

Таблица 9.2. Наибольшая крутизна откосов траншей и котлованов, град.

Грунты Крутизна откосов при глубине выемки, м (отношение высоты к заложению)
1,5 3,0 5,0
Насыпные неуплотненные 56(1:0,67) 45(1:1) 38(1:1,25)
Песчаные и гравийные влажные 63(1:0,5) 45(1:1) 45(1:1)
Глинистые:
супесь 76(1:0,25) 56(1:0,67) 50(1:0,85)
суглинок 90(1:0) 63(1:0,5) 53 (1:0,75)
глина 90(1:0) 76(1:0,25) 63(1:0,5)
Лессы и лессовидные сухие 90(1:0) 63(1:0,5) 63(1:0,6)
Моренные:
песчаные, супесчаные 76(1:0,25) 60(1:0,57) 53 (1:0,75)
суглинистые 78(1:0,2) 63(1:0,5) 57(1:0,65)

Откосы насыпей постоянных сооружений выполняют более пологими, чем откосы выемок.

Цель работы:

Ознакомление с методикой определения угла естественного откоса для песчаных грунтов.

Приобретение навыков в работе с прибором для определения угла естественного откоса сыпучих грунтов.

Определение угла естественного откоса песка в воздушно-сухом и подводном состоянии.

Необходимое оборудование и материалы

Методические указания к выполнению работы.

Журнал лабораторных работ.

Прибор для определения угла естественного откоса полевой лаборатории Литвинова.

Емкость с водой.

Отсутствие сцепления в песках позволяет определять угол внутреннего трения φ 0 по углу естественного откоса грунта в условиях предельного равновесия (рис. 2.3.).

Рис.2.3. Схема к определению угла естественного откоса песчаного гранта.

T 1 =

где φ – угол внутреннего трения; tg φ – коэффициент трения

Углом естественного откоса песчаного грунта называют максимальное значение угла, образуемого с горизонтальной плоскостью, поверхностью грунта, отсыпанного без толчков и динамических воздействий.

Угол естественного откоса определяют для песчаного грунта в воздушно-сухом состоянии и под водой. Для испытания используем прибор Литвинова.

Порядок выполнения работы

Определение угла естественного откоса грунта в воздушно-сухом состоянии производят следующим образом. Прибор устанавливают на стол, выдвижная створка при этом опущена до дна. В малое отделение прибора до верха засыпают испытываемый песок (рис.2.4). После этого постепенно поднимают выдвижную створку без толчков; при этом прибор придерживают рукой. Грунт постепенно частично пересыпается в другое отделение до наступления положение равновесия.

Рис. 2.4. Общий вид прибора для определения угла естественного откоса песков (Ящик Кулона).

Угол между плоскостью свободного откоса и горизонтальной плоскостью и есть угол естественного откоса. По делениям на днище и боковой стенке отсчитывают высоту и заложение откоса и вычисляют тангенс угла естественного откоса; отсчеты ведут с точностью до 1мм.

Определение угла естественного откоса грунта в подводном состоянии отличается от предыдущего тем, что после того, как в малое отделение прибора насыпают испытываемый грунт, в большое отделения до верха наливают воду. Верхнюю створку подымают на несколько миллиметров, чтобы вода могла проникнуть в малое отделение. Когда весь грунт пропитается водой, поднимают створку выше и испытание продолжают так же, как и предыдущее. Результаты испытаний заносят в таблицу 2.4.

Гранулометрический состав. Практически характер и качество разрушения породы четко определяется ее гранулометрическим составом. Он характеризует разрыхленную горную породу по процентному содержанию в ней частиц различной крупности и может быть изображен кривой (рис. 2.1), если по оси абсцисс отложить диаметр частиц, мм, а по оси ординат — суммарное содержание частиц диаметром, меньшим данного, в процентах.
Для характеристики неоднородности рыхлых пород используется отношение d60/d10=Kн называемое коэффициентом неоднородности (d60, d10 — максимальные диаметры кусков, составляющих 60 и 10% общего объема рыхлой породы соответственно).
Особенно важное значение гранулометрический состав породы имеет при процессах гидромеханизации. От него зависят удельный расход воды на разработку и транспортирование, наименьший допустимый уклон подошвы забоя и лотков, критическая скорость воды.
Угол естественного откоса φ — максимальный угол, образуемый свободной поверхностью рыхлой раздробленной породы с горизонтальной плоскостью. Частицы породы, находящиеся на этой поверхности, испытывают состояние предельного равновесия. Если вес частицы Р (рис. 2.2), то в состоянии предельного равновесия на свободной поверхности на частицу действуют силы: Рп — сила нормального давления, прижимающая частицу к свободной поверхности; Рτ — сила, стремящаяся сдвинуть частицу вниз; Fт — сила трения, зависящая от Рn и коэффициента трения fтр, R — реакция опоры. Поскольку частица находится в равновесии, имеем

Таким образом, угол естественного откоса зависит от коэффициента трения между кусками породы и поверхностью, по которой возможно ее скольжение. Для рыхлой (сыпучей) среды, например песка, он может быть определен с помощью цилиндрической емкости без дна. Емкость устанавливают на горизонтальной площадке и заполняют породой. Затем емкость поднимают и порода формирует свободную поверхность, соответствующую углу естественного откоса.
В общем случае угол естественного откоса зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от плотности материала. С увеличением влажности до некоторого предела у таких горных пород, как уголь или песок, угол естественного откоса возрастает. С увеличением крупности и угловатости частиц он также увеличивается. В целом у рыхлых пород он находится в пределах 0-40°.
По углам естественного откоса определяют максимальные допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

Лабораторная работа 1. Определение величины угла ссыпания и угла естественного откоса зернисто-кускового материала

Цель работы. Определить величины угла естественного откоса и угла ссыпания зернисто-кускового материала.

Теоретические положения . Зернисто-кусковой материал, лежащий на наклонной плос­кости (например, на наклонной плоскости бункера , на наклон­ном ленточном транспортере и т. д.), при определенном угле наклона этой плоскости к горизонту начинает ссыпаться по ней. Такой предельный угол наклона называется углом ссыпания.

В зависимости от формы кусочков можно наблюдать два ви­да движения кускового материала по плоскости ссыпания: сколь­жение и перекатывание. Скольжение наблюдается при кусках с развитыми плоскими гранями; передвижению кусков здесь препятствует трение скольжения между гранями кусков и плос­костью ссыпания. Качение наблюдается при форме кусков, близкой к шару. В этом случае передвижение куска происходит как скатывание его, с сопротивлением трения качения.

Предельное состояние покоя слоя кускового материала на наклонной плоскости имеет место тогда, когда сила трения F равна проекции М силы тяжести G на эту плоскость (рисунок 1). С другой стороны, эта же сила трения пропорциональна нор­мальному давлению кускового материала на наклонную плос­кость

F = M = fN ,

откуда f = М / N = tgα

где f – коэффициент трения, определяемый свойствами самого материала, равный tga ;

α – угол ссыпания зернисто-кускового материала.

Если рассматривать весь слой сыпучего материала , который перемещается по гладкой наклонной плоскости, то здесь, даже в случае кусков шарообразной формы, происходит скорее сколь­жение материала по плоскости, чем перекатывание, так как весь материал «течет» сплошной массой.

Угол ссыпания зависит от коэффициента трения материала о плоскость ссыпания, от формы и крупности кусков, от структу­ры поверхности, по которой происходит ссыпание (поверхность может быть гладкой, шероховатой, ребристой и т. д.), а также он влажности самого кускового материала.

Если насыпать зернисто-кусковой материал на горизонталь­ную плоскость, то он располагается на ней в виде конуса. Угол между образующей этого конуса и горизонтальной плоско­стью называется углом естественного откоса зернисто-кускового материала.

Угол естественного откоса всегда больше угла ссыпания (для одного и того же материала), так как наличие неровностей на поверхности материала препятствует скатыванию, а тем более скольжению кусков. Угол естественного откоса в большой степе­ни зависит от фракционного состава кускового материала, ибо последний определяет собой общую структуру поверхности ко­нуса. Эта разнородность размера кусков вызывает в то же вре­мя преимущественное скатывание крупных кусков материала на край насыпаемой кучи, вследствие того, что неровности поверх­ности оказывают меньшее сопротивление перекатыванию крупн ых кусков, чем мелких (рисунок 2). Неравномерное распределение кусков по крупности необходимо учитывать при загрузке насадочных абсорберов, шахтных печей и т. д., так как в местах рас­положения крупных кусков, т. е. на-периферии, получается боль­шее сечение каналов и газ пойдет преимущественно по этим ка­налам, имеющим меньшее гидравлическое сопротивление.

Тонко измельченные материалы имеют больший угол естест­венного откоса, т. е. меньшую сыпучесть, в связи с более разви­той поверхностью трения.

Угол естественного откоса значительно зависит от влажности материала, потому что вода, располагаясь на поверхности кус­ков, вызывает слипание их и тем самым затрудняет движение отдельных кусков. Чем меньше куски материала, тем больше проявляется влияние влажности; но чрезмерное увлажнение приводит к увеличению послойной текучести жидкости между кусочками материала, и угол естественного откоса вновь умень­шается (таблица 1).

Угол естественного откоса, град, для породы

Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии. Определение угла естественного откоса грунтов Угол естественного откоса грунта значение

Определение угла естественного откоса песчаного грунта в сухом и влажном состоянии. Определение угла естественного откоса грунтов Угол естественного откоса грунта значение

Лабораторная работа №1

Определение гранулометрического состава песка и степени его однородности

Цель работы: определение свойств грунта (песка) по его гранулометрическому составу. Зная его состав и содержание в нем определения фракций, можно судить о его свойствах и применении в практике строительства (растворы, песчаные подушки, фундаменты и т.п.).

Задачи работы : получить навыки определения процентного содержания каждой фракции, квартования, определения однородности и неоднородности грунтов по графику.

Обеспечивающие средства: сита, электронные весы, навеска воздушно-сухого песка.

Цель работы. Определить величины угла естественного откоса и угла ссыпания зернисто-кускового материала.

Теоретические положения . Зернисто-кусковой материал, лежащий на наклонной плос­кости (например, на наклонной плоскости бункера , на наклон­ном ленточном транспортере и т. д.), при определенном угле наклона этой плоскости к горизонту начинает ссыпаться по ней. Такой предельный угол наклона называется углом ссыпания.

В зависимости от формы кусочков можно наблюдать два ви­да движения кускового материала по плоскости ссыпания: сколь­жение и перекатывание. Скольжение наблюдается при кусках с развитыми плоскими гранями; передвижению кусков здесь препятствует трение скольжения между гранями кусков и плос­костью ссыпания. Качение наблюдается при форме кусков, близкой к шару. В этом случае передвижение куска происходит как скатывание его, с сопротивлением трения качения.

Предельное состояние покоя слоя кускового материала на наклонной плоскости имеет место тогда, когда сила трения F равна проекции М силы тяжести G на эту плоскость (рисунок 1). С другой стороны, эта же сила трения пропорциональна нор­мальному давлению кускового материала на наклонную плос­кость

F = M = fN ,

откуда f = М / N = tgα

где f – коэффициент трения, определяемый свойствами самого материала, равный tga ;

α – угол ссыпания зернисто-кускового материала.

Если рассматривать весь слой сыпучего материала , который перемещается по гладкой наклонной плоскости, то здесь, даже в случае кусков шарообразной формы, происходит скорее сколь­жение материала по плоскости, чем перекатывание, так как весь материал «течет» сплошной массой.

Угол ссыпания зависит от коэффициента трения материала о плоскость ссыпания, от формы и крупности кусков, от структу­ры поверхности, по которой происходит ссыпание (поверхность может быть гладкой, шероховатой, ребристой и т. д.), а также он влажности самого кускового материала.

Если насыпать зернисто-кусковой материал на горизонталь­ную плоскость, то он располагается на ней в виде конуса. Угол между образующей этого конуса и горизонтальной плоско­стью называется углом естественного откоса зернисто-кускового материала.

Угол естественного откоса всегда больше угла ссыпания (для одного и того же материала), так как наличие неровностей на поверхности материала препятствует скатыванию, а тем более скольжению кусков. Угол естественного откоса в большой степе­ни зависит от фракционного состава кускового материала, ибо последний определяет собой общую структуру поверхности ко­нуса. Эта разнородность размера кусков вызывает в то же вре­мя преимущественное скатывание крупных кусков материала на край насыпаемой кучи, вследствие того, что неровности поверх­ности оказывают меньшее сопротивление перекатыванию крупн ых кусков, чем мелких (рисунок 2). Неравномерное распределение кусков по крупности необходимо учитывать при загрузке насадочных абсорберов, шахтных печей и т. д., так как в местах рас­положения крупных кусков, т. е. на-периферии, получается боль­шее сечение каналов и газ пойдет преимущественно по этим ка­налам, имеющим меньшее гидравлическое сопротивление.

Тонко измельченные материалы имеют больший угол естест­венного откоса, т. е. меньшую сыпучесть, в связи с более разви­той поверхностью трения.

Угол естественного откоса значительно зависит от влажности материала, потому что вода, располагаясь на поверхности кус­ков, вызывает слипание их и тем самым затрудняет движение отдельных кусков. Чем меньше куски материала, тем больше проявляется влияние влажности; но чрезмерное увлажнение приводит к увеличению послойной текучести жидкости между кусочками материала, и угол естественного откоса вновь умень­шается (таблица 1).

Угол естественного откоса, град, для породы

Угол естественного откоса и угол ссыпания резко уменьшают­ся при движении материала и плоскости, на которой он лежит. При сотрясениях или вибрациях материал интенсивно рассыпа­ется, растекается, стремясь принять горизонтальное положение, так как при вибрациях в отдельные моменты уменьшается вза­имное трение по поверхности соприкосновения кусочков друг с другом и кусочков с плоскостью. На этом основано применение вибротранспортирующих устройств, вибраторов для облегчения разгрузки бункеров, самосвалов и дозирующих устройств.

Знание углов естественного откоса и ссыпания необходимо при проектировании складских помещений, транспортеров, шахт­ных печей, где имеют дело с сыпучими материалами. Невозмож­ность учета теоретически всех факторов, определяющих величи­ну этих углов, приводит к необходимости экспериментального их определения.

Описание установки. Для определения угла естественного откоса используется гладкая горизонтальная плоскость с нанесенными на ней делениями в сантиметрах и короткий металлический цилиндр; для определения угла ссыпания — прибор, состоящий из вала 1, на который навертывается шнур, кронштейна 2, через который шнур соединяется с подъемной доской 3, и угломера 4, установленного у оси вращения подъемной доски. Подъемная доска снабжена указателем, показывающим на угломере угол ее подъема (рисунок 3). Для сбора ссыпавшейся массы поставлен ящик. В рабо­те используется также линейка, весы и прямоугольная металли­ческая рамка.

Проведение опыта и запись наблюдений. При определении углов естественного откоса и ссыпания ис­пользуется сыпучий материал двух или трех сортов крупности.

А. Определение угла естественного откоса

1. Установить металлический цилиндр в центре горизонталь­ной плоскости,

2. Набрать совком сыпучий материал и высыпать его в цилиндр.

3. Медленно поднять цилиндр, предоставив материалу сво­бодно рассыпаться по плоскости.

Б. Определение угла ссыпания

1. Уложить на подъемной доске прямоугольную металличес­кую рамку и полностью засыпать ее сыпучим материалом.

2. Снять прямоугольную рамку и, медленно вращая вал, при­вести подъемную доску в наклонное положение.

3. Когда материал начнет ссыпаться, прекратить подъем до­ски и записать угол ее наклона. Перенести весь материал с подъемной доски и ее подставки на лист бумаги, взвесить мате­риал, добавить определенное количество воды (заданное препо­давателем), тщательно перемешать и произвести с влажным ма­териалом те же определения (этапы А, 1 — 4 и Б,

Результаты опытов внести в таблицу 2.

Наименование исследуемого материала

Угол естественного откоса

Обработка результатов опыта. Пользуясь соотношением определить величину tg α и по таблицам найти соответству­ющее значение α.

font-size:14.0pt; font-family:» times new roman>где α – угол естественного откоса, град.;

Н – высота насыпанной кучи материала, см;

D – диаметр насыпанной кучи материала, см;

font-size:14.0pt; font-family:» times new roman>– радиус насыпанной кучи материала, см,

1) Краткое изложение теории и цель работы.

2) Схема установки.

4) Вывод по работе.

Задание на подготовку к лабораторной работе .

1) Измельчение твёрдых материалов и их классификация .

2) Измельчение, грохочение и дозирование твёрдых тел .

Контрольные вопросы .

1) Объясните понятие «угол ссыпания».

2) Виды движения кускового материала по плоскости ссыпания.

3) Назовите факторы, от которых зависит величина угла ссыпания зернисто-кускового материала.

4) Объясните понятие «угол естественного откоса зернисто-кускового материала».

5) Назовите факторы, от которых зависит величина угла естественного откоса.

6) Скажите какая величина больше — угол ссыпания или угол естественного откоса, объясните почему.

7) Как изменяется величина угла ссыпания и угла естественного откоса при движении материала и плоскости, на которой он лежит?

8) Как угол естественного откоса зависит от влажности?

9) тонко или крупно измельчённый материал имеет больший угол естественного откоса?

10) Для чего необходимо знание углов естественного откоса и ссыпания?

Углом естественного откоса грунта называется наибольшее значение угла, который образует с горизонтальной плоскостью поверхность грунта, отсыпанного без толчков; сотрясений и колебаний.
Угол естественного откоса зависит от сопротивления грунта сдвигу. Для установления этой зависимости представим себе грунтовое тело, рассеченное плоскостью а — а, наклоненной к горизонту под углом а (рис. 22).

Часть грунта выше плоскости а — а, рассматриваемая как единый массив, может оставаться в покое или прийти в движение под действием силы P — собственного веса и воздействия возведенного на нем сооружения.
Разложим P на две силы: N = P cos а, направленную нормально к плоскости а — а и силу T = P sin а, параллельную плоскости а — а. Сила T стремится сдвинуть отсеченную часть, которая удерживается силами сцепления и трения в плоскости а — а.
В состоянии предельного равновесия, когда сдвигающая сила уравновешивается сопротивлением трения и сцепления, но когда сдвига еще нет, выполняется равенство 26, т. е. T = N tg ф + CF.
В глинистых грунтах сдвигу в основном противодействует сцепление.

В сухом песке сцепления почти нет и состояние предельного равновесия характеризуется соотношением T = N tg ф. Подставляя значения N и T, получим P sin а = P cos a tg ф или tg a = tg ф и а = ф, т. е. угол а соответствует углу внутреннего трения грунта ф в состоянии предельного равновесия массива несвязного грунта.
Определение угла естественного откоса песка показано на рис. 23. Угол естественного откоса песка определяют дважды — для состояния естественной влажности и под водой. Для этого в стеклянный прямоугольный сосуд насыпают песчаный грунт, как показано на рис. 23, а. Затем сосуд наклоняют под углом не менее 45° и осторожно возвращают в прежнее положение (рис. 23, б). Далее определяется угол а между образовавшимся откосом песчаного грунта и горизонталью; о величине угла а можно судить по отношению hl, равному tg а.

В последние годы для определения характеристик сопротивления грунтов сдвигу предложен ряд новых методов: по данным испытания грунтов в стабилометрах (см. рис. 11), по вдавливанию шарикового штампа в грунт (рис. 24), аналогично определению твердости по Бринеллю и др.
Испытание грунта методом шариковой пробы (рис. 24) заключается в измерении осадки шарика S при действии на него постоянной нагрузки р.
Значение эквивалентного сцепления грунта определяется по следующей формуле:

где P — полная нагрузка на
D — диаметр шарика, см;
S — осадка шарика, см.

Величина сцепления сш учитывает не только силы сцепления грунта, но и внутреннее трение.
Для определения удельного сцепления с значение сш умножается на коэффициент К, который зависит от угла внутреннего трения ф (град).

В последние годы метод шариковой пробы стали применять в полевых условиях. В этом случае применяются полусферические штампы размером до 1 м (рис. 25).
Характеристики сдвига ф и с называются прочностными и точность их определения имеет большое значение при расчете оснований сооружений по прочности и устойчивости.

Гранулометрический состав. Практически характер и качество разрушения породы четко определяется ее гранулометрическим составом. Он характеризует разрыхленную горную породу по процентному содержанию в ней частиц различной крупности и может быть изображен кривой (рис. 2.1), если по оси абсцисс отложить диаметр частиц, мм, а по оси ординат — суммарное содержание частиц диаметром, меньшим данного, в процентах.
Для характеристики неоднородности рыхлых пород используется отношение d60/d10=Kн называемое коэффициентом неоднородности (d60, d10 — максимальные диаметры кусков, составляющих 60 и 10% общего объема рыхлой породы соответственно).
Особенно важное значение гранулометрический состав породы имеет при процессах гидромеханизации. От него зависят удельный расход воды на разработку и транспортирование, наименьший допустимый уклон подошвы забоя и лотков, критическая скорость воды.
Угол естественного откоса φ — максимальный угол, образуемый свободной поверхностью рыхлой раздробленной породы с горизонтальной плоскостью. Частицы породы, находящиеся на этой поверхности, испытывают состояние предельного равновесия. Если вес частицы Р (рис. 2.2), то в состоянии предельного равновесия на свободной поверхности на частицу действуют силы: Рп — сила нормального давления, прижимающая частицу к свободной поверхности; Рτ — сила, стремящаяся сдвинуть частицу вниз; Fт — сила трения, зависящая от Рn и коэффициента трения fтр, R — реакция опоры. Поскольку частица находится в равновесии, имеем

Таким образом, угол естественного откоса зависит от коэффициента трения между кусками породы и поверхностью, по которой возможно ее скольжение. Для рыхлой (сыпучей) среды, например песка, он может быть определен с помощью цилиндрической емкости без дна. Емкость устанавливают на горизонтальной площадке и заполняют породой. Затем емкость поднимают и порода формирует свободную поверхность, соответствующую углу естественного откоса.
В общем случае угол естественного откоса зависит от шероховатости зерен, степени их увлажнения, гранулометрического состава и формы, а также от плотности материала. С увеличением влажности до некоторого предела у таких горных пород, как уголь или песок, угол естественного откоса возрастает. С увеличением крупности и угловатости частиц он также увеличивается. В целом у рыхлых пород он находится в пределах 0-40°.
По углам естественного откоса определяют максимальные допустимые углы откосов уступов и бортов карьеров, насыпей, отвалов и штабелей.

угол естественного откоса кварцевого песка

Песок для песочниц локомотивов купить в СПБ

Влажность песка должна быть не более 0 5% Абразивность должна обеспечивать угол естественного откоса песка в спокойном состоянии не менее 28° Для локомотивов готовим специальный песок

Характеристики и физико механические свойства

Рис 1 Определение угла естественного откоса Для материалов сцепление которых незначительно или вовсе отсутствует угол внутреннего трения равен углу естественного откоса

Угол естественного откоса грунта

Так угол естественного откоса у песчаных грунтов и песка под влиянием влаги становится более устойчивым песок средний сухой 28° влажный 35° но при сильном переувлажнении песка откос его начинает сползать

Как рассчитать угол покоя Наука 2020

Угол естественного откоса для сухого песка рассчитан на 35 градусов тогда как у цемента угол естественного откоса составляет 20 градусов

Высота и углы откосов уступов карьера

Углы откосов рабочих уступов определяются проектом с учетом физико механических свойств горных пород и не должны превышать 80 град а при работе многоковшовых цепных экскаваторов с нижним черпанием и разработке

Фундаменты мелкого заложения и их основные

Угол естественного откоса влажного песка может быть больше угла внутреннего трения так как в этом случае действуют капиллярные силы удерживающие откос от разрушения

Откос 1 2 сколько градусов

Так угол естественного откоса у песчаных грунтов и песка под влиянием влаги становится более устойчивым песок средний сухой 28° влажный 35° но при сильном переувлажнении песка откос его начинает сползать

Угол естественного откоса песка Починить

Именно таким образом угол естественного откоса песка с водой составляет от 20 до 35 градусов Влажный песок не содержит в себе воды ведь осталось лишь наличие размокших частичек песка

Характеристики и физико механические свойства

Рис 1 Определение угла естественного откоса Для материалов сцепление которых незначительно или вовсе отсутствует угол внутреннего трения равен углу естественного откоса

Гранулометрический состав Угол естественного

Таким образом угол естественного откоса зависит от коэффициента трения между кусками породы и поверхностью по которой возможно ее скольжение Для рыхлой сыпучей среды например песка он может быть определен с

Министерство науки и высшего образования Российской

Угол естественного откоса определяется в воздушно сухом состоя нии Необходимое оборудование 1 Прибор УВТ 2 2 Совочек для засыпки песка Ход работы 1 Необходимыми порциями песок засыпают

Текучесть порошков композиционных цементов

5 Угол естественного откоса ф град 27 26 25 24 21 26 Изменения свойств индивидуальных порошков ПЦ кварцевого песка известняка при сухом помоле без добавок С 3 от 8УД=3000 см2/г до 6000 см2/г представлены в табл

4 Минерально строительные материалы СтудИзба

Наибольших значений около 40° угол естественного откоса достигает при влажности песка 5—10% Дальнейшее увеличение влажности приводит к уменьшению угла естественного откоса до 20—25° и в комплексе с ударными или

Фундаменты мелкого заложения и их основные

Угол естественного откоса влажного песка может быть больше угла внутреннего трения так как в этом случае действуют капиллярные силы удерживающие откос от разрушения

Угол откоса котлована таблица в зависимости от

Когда нужно выкопать выемку от 1 5 м глубиной тогда следует принимать угол откоса котлована по таблице приведенной в СНиП 111 4 80 В ней учтены как разновидность грунта так и глубина заложения основания

Откосы в траншее глубиной более 1м

Крутизна откоса зависит от угла естественного откоса б при котором грунт находится в состоянии предельного равновесия Рис 1 Крутизна откоса Таблица 2

Земляные работы при планировке и разработке

Для песка откосы грунта принимаются с коэффициентом заложения m=2 в соответствии с углами естественного откоса Коэффициент остаточного разрыхления для песка Кост= Субботин С Л

Земляные работы при планировке и разработке

Для песка откосы грунта принимаются с коэффициентом заложения m=2 в соответствии с углами естественного откоса Коэффициент остаточного разрыхления для песка Кост= Субботин С Л

МЕХАНИКА ГРУНТОВ

Результаты определения угла естественного откоса песка № определения Угол в градусах Среднее значение угла 1 2 3 Преподаватель проверяет выполнение задания в течение занятия 3

Текучесть порошков композиционных цементов

5 Угол естественного откоса ф град 27 26 25 24 21 26 Изменения свойств индивидуальных порошков ПЦ кварцевого песка известняка при сухом помоле без добавок С 3 от 8УД=3000 см2/г до 6000 см2/г представлены в табл

Угол естественного откоса песка

Угол естественного откоса песков это предельный угол свободного отсыпания песка при котором грунтовая масса находится в устойчивом состоянии Этот показатель определяется как в сухом состоянии так и под водой

М Что такое полное эффективное и

Угол внутреннего трения не совпадает по своей величине с углом естественного откоса именуемого иногда углом внешнего трения Угол естественного откоса влажного песка может быть больше угла внутреннего трения

Откосы в траншее глубиной более 1м

Крутизна откоса зависит от угла естественного откоса б при котором грунт находится в состоянии предельного равновесия Рис 1 Крутизна откоса Таблица 2

Реферат на тему «Определения угла естественного откоса»

Новые аудиокурсы повышения квалификации для педагогов

Слушайте учебный материал в удобное для Вас время в любом месте

откроется в новом окне

Выдаем Удостоверение установленного образца:

МКОУ СОШ №2 им. Н.Д. Рязанцева г. Семилуки

Воронежской области

Реферат на тему:

« Измерение угла естественного откоса насыпи »

Ученица 11 класса

им. Н.Д. Рязанцева г. Семилуки

Павлова Анастасия Александровна

Руководитель:

Учитель физики

Баранова Елена Геннадьевна

Семилуки – 2017 г

Способы определения угла естественного откоса

Как известно, сыпучие тела по своим физическим свойствам занимают промежуточное положение между твердыми телами и жидкостями. Сыпучее тело — своего рода «колония» из однородных твердых частиц. Колония эта при некоторых условиях принимает форму откоса, пирамиды или конуса, определяемую углом внутреннего трения материала.

Неустойчивость сыпучей среды никого не удивляет. Возьмите, например, песок. Он «растекается», протекает сквозь пальцы, сползает с наклонной плоскости, сдвигает подпорные стенки, передвигается под действием ветра (дюны), может развеяться и исчезнуть, как мираж. В сыпучем материале можно даже утонуть.

Однако при некоторых условиях сыпучее тело может быть весьма устойчивым. Это свойство подвижной сыпучей среды удивляет.

Чтобы убедиться в этом, можно выполнить несколько элементарных опытов, легко воспроизводимых даже в домашних условиях.

1. Узнать, что такое угол естественного откоса насыпи;

2. Узнать о методах определения угла;

3. Измерить угол естественного откоса у некоторых сыпучих веществ;

4. Сделать выводы и определить от чего зависит угол естественного откоса.

Способы определения угла естественного откоса.

Частицы материала, находящиеся на свободной поверхности насыпи, испытывают состояние критического (предельного) равновесия. Угол естественного откоса связан с коэффициентом трения и зависит от формы , размера , шероховатости однородности грузовых частиц.

Применяются различные методы определения величины угла естественного откоса; к числу наиболее распространенных относятся способы насыпки и обрушения . Среди которых можно выделить еще 3 способа для определения углов естественного откоса. Только общим недостатком, которых является возможность производства экспериментов только с грузами, имеющими относительно небольшие и однородные грузовые частицы. Наиболее распространенными методами определения угла естественного откоса в лабораторных условиях являются следующие:

1. В ящик прямоугольной формы размером 10х20х30 мм (или больше) насыпают исследуемый материал так, чтобы свободная его поверхность была горизонтальной, а затем поворачивают его на угол 45 или 90° и после прекращения осыпания груза определяют угол естественного откоса φ с помощью транспортира или путем замера высоты h и длины L откоса и вычисления тангенса угла φ (tg φ = L/h)

2. Диск диаметром 10 см (или больше), имеющий вертикальный тарированный стержень, опускают в стеклянную банку и засыпают исследуемым материалом. Затем диск плавно вынимают. Высота оставшегося на диске конуса материала показывает величину угла естественного откоса, значения которого нанесены на стержне.

3. В воронку с диаметром трубы 5 мм (или больше) осторожно засыпают исследуемый материал, и затем воронку медленно поднимают по мере образования конуса груза. Полученный таким образом конус замеряют угломером с четырех сторон (или транспортиром) и среднее значение принимают за величину угла естественного откоса исследуемого материала.

Я использовала третий способ измерения угла.

Но перед выполнением работы нужно подготовить простейшей угломер, который я сделала из обычной бумаги. Я разрезала восьмую часть листа бумаги по диагонали и сложила, как показано на фотографиях.

Алгоритм выполнения опыта:

Установить прибор в собранном виде на горизонтальную плоскость. (рис.1)

В воронку медленно насыпать сухой материал.

Песок начнёт сыпаться из воронки пока не наступит равновесное положение его частичек на образовавшейся конической поверхности.

Определить величину угла при вершине конуса с помощи простейшего угломера. Для этого необходимо наш угломер приставить к стенке, на которой видна тень насыпи, и сдвигая листки, добиваться совпадения угла насыпи с углом, образованным листками (угол φ) . А затем по формуле

(180º-φ) /2, высчитать угол естественного откоса.

Опыт повторить 2-3 раза. Расхождение между повторными определениями не должно превышать 1 о .

За угол естественного откоса принимается среднее арифметическое значение результатов отдельных определений выраженное в целых градусах. (рис.2)

1. Углом естественного откоса называется угол, образуемый поверхностью свободно насыпанного материала с горизонтом. Частицы грунта на откосе под углом естественного откоса находятся в состоянии предельного равновесия.

2. В зависимости от размеров частиц различают пылевидные, порошкообразные и зернистые сыпучие материалы.

3. Угол естественного откоса песчаных грунтов определяют на воздухе и под водой.

4. Каждое определение выполняют с двукратной повторностью.

5. Точность определения угла естественного откоса — 1 °.

Угол внутреннего трения (естественного откоса) некоторых сыпучих материалов, градусы

Я получила такие результаты:

При землеройных работах большое значение имеет величина угла естественного откоса грунта . При этом в зависимости от положения действительного и прогнозируемого уровня грунтовых вод используют соответственно результаты определения угла естественного откоса грунта в воздушно сухом состоянии. У некоторых грунтов угол естественного откоса слабо изменяется при воздействии метеорологических факторов, а у других — значительно. Это зависит от механических свойств грунта и от их влажности. Следует отметить, что угол естественного откоса песчаных грунтов под водой значительно уменьшается, особенно характерно это проявляется для пылеватых песков. Глина жирная в сухом состоянии имеет угол откоса 45°, а во влажном 15°. Однако иногда большая влажность грунта способствует лучшему сохранению естественного угла откоса.

С углом естественного откоса связаны конфигурация бункеров, расчет прочности их стенок, площадь напольных складов для угля и прочее. Тесную связь с углом естественного откоса имеют и углы наклона для течек и желобов, служащих для транспортировки угля на углеподготовках, обогатительных и брикетных фабриках.

В ходе работы я узнала, какие бывают способы определения угла естественного откоса:

1.При помощи ящика прямоугольной формы.

2. С помощью диска, имеющего вертикальный тарированный стержень.

3. При помощи воронки.

Затем с помощью одного из способов определила данные углы у некоторых сыпучих веществ и узнала где применяется угол естественного откоса.

(рис.1.)

(рис.2)

(рис.3)

Журнал с гайдами и советами
Добавить комментарий